This workshop is licensed under a Creative Commons Attribution 4.0 International License.
For this workshop, I recommend installing Python 3 using Anaconda. The workshop was built using the Spyder IDE, but users can use any python environment they prefer.
with open()
to open any single filewith open()
can open files to read in data or to write out data to a fileimport csv
primes = [2,3,5]
with open('output.csv','w', newline='') as outFile:
for prime in primes:
squared = prime ** 2
cubed = prime ** 3
row = [prime,squared,cubed]
csv.writer(outFile).writerow(row)
import csv
with open('output.csv','r') as dataFile:
data = csv.reader(dataFile)
for row in data:
print(row)
import pandas
.pandas.read_csv
.
import pandas as pd
data = pd.read_csv('data/gapminder_gdp_oceania.csv')
print(data)
country gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 \
0 Australia 10039.59564 10949.64959 12217.22686
1 New Zealand 10556.57566 12247.39532 13175.67800
gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 \
0 14526.12465 16788.62948 18334.19751 19477.00928
1 14463.91893 16046.03728 16233.71770 17632.41040
gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 \
0 21888.88903 23424.76683 26997.93657 30687.75473
1 19007.19129 18363.32494 21050.41377 23189.80135
gdpPercap_2007
0 34435.36744
1 25185.00911
\
to show wrapped lines when output is too wide to fit the screen.index_col
to specify that a column’s values should be used as row headings.read_csv
as its index_col
parameter to do this.data = pd.read_csv('data/gapminder_gdp_oceania.csv', index_col='country')
print(data)
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 \
country
Australia 10039.59564 10949.64959 12217.22686 14526.12465
New Zealand 10556.57566 12247.39532 13175.67800 14463.91893
gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 \
country
Australia 16788.62948 18334.19751 19477.00928 21888.88903
New Zealand 16046.03728 16233.71770 17632.41040 19007.19129
gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Australia 23424.76683 26997.93657 30687.75473 34435.36744
New Zealand 18363.32494 21050.41377 23189.80135 25185.00911
DataFrame.info
to find out more about a dataframe.data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, Australia to New Zealand
Data columns (total 12 columns):
gdpPercap_1952 2 non-null float64
gdpPercap_1957 2 non-null float64
gdpPercap_1962 2 non-null float64
gdpPercap_1967 2 non-null float64
gdpPercap_1972 2 non-null float64
gdpPercap_1977 2 non-null float64
gdpPercap_1982 2 non-null float64
gdpPercap_1987 2 non-null float64
gdpPercap_1992 2 non-null float64
gdpPercap_1997 2 non-null float64
gdpPercap_2002 2 non-null float64
gdpPercap_2007 2 non-null float64
dtypes: float64(12)
memory usage: 208.0+ bytes
DataFrame
'Australia'
and 'New Zealand'
DataFrame.columns
variable stores information about the dataframe’s columns.math.pi
.()
to try to call it.print(data.columns)
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007'],
dtype='object')
DataFrame.T
to transpose a dataframe..T
) doesn’t copy the data, just changes the program’s view of it.columns
, it is a member variable.print(data.T)
country Australia New Zealand
gdpPercap_1952 10039.59564 10556.57566
gdpPercap_1957 10949.64959 12247.39532
gdpPercap_1962 12217.22686 13175.67800
gdpPercap_1967 14526.12465 14463.91893
gdpPercap_1972 16788.62948 16046.03728
gdpPercap_1977 18334.19751 16233.71770
gdpPercap_1982 19477.00928 17632.41040
gdpPercap_1987 21888.88903 19007.19129
gdpPercap_1992 23424.76683 18363.32494
gdpPercap_1997 26997.93657 21050.41377
gdpPercap_2002 30687.75473 23189.80135
gdpPercap_2007 34435.36744 25185.00911
DataFrame.describe
to get summary statistics about data.DataFrame.describe() gets the summary statistics of only the columns that have numerical data.
All other columns are ignored, unless you use the argument include='all'
.
print(data.describe())
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 \
count 2.000000 2.000000 2.000000 2.000000
mean 10298.085650 11598.522455 12696.452430 14495.021790
std 365.560078 917.644806 677.727301 43.986086
min 10039.595640 10949.649590 12217.226860 14463.918930
25% 10168.840645 11274.086022 12456.839645 14479.470360
50% 10298.085650 11598.522455 12696.452430 14495.021790
75% 10427.330655 11922.958888 12936.065215 14510.573220
max 10556.575660 12247.395320 13175.678000 14526.124650
gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 \
count 2.00000 2.000000 2.000000 2.000000
mean 16417.33338 17283.957605 18554.709840 20448.040160
std 525.09198 1485.263517 1304.328377 2037.668013
min 16046.03728 16233.717700 17632.410400 19007.191290
25% 16231.68533 16758.837652 18093.560120 19727.615725
50% 16417.33338 17283.957605 18554.709840 20448.040160
75% 16602.98143 17809.077557 19015.859560 21168.464595
max 16788.62948 18334.197510 19477.009280 21888.889030
gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
count 2.000000 2.000000 2.000000 2.000000
mean 20894.045885 24024.175170 26938.778040 29810.188275
std 3578.979883 4205.533703 5301.853680 6540.991104
min 18363.324940 21050.413770 23189.801350 25185.009110
25% 19628.685413 22537.294470 25064.289695 27497.598692
50% 20894.045885 24024.175170 26938.778040 29810.188275
75% 22159.406358 25511.055870 28813.266385 32122.777857
max 23424.766830 26997.936570 30687.754730 34435.367440
As well as the
read_csv
function for reading data from a file, Pandas provides ato_csv
function to write dataframes to files. Applying what you’ve learned about reading from files, write one of your dataframes to a file calledprocessed.csv
. You can usehelp
to get information on how to useto_csv
.Solution
In order to write the DataFrame
americas
to a file calledprocessed.csv
, execute the following command:americas.to_csv('processed.csv')
A [DataFrame][pandas-dataframe] is a collection of [Series][pandas-series]; The DataFrame is the way Pandas represents a table, and Series is the data-structure Pandas use to represent a column.
Pandas is built on top of the [Numpy][numpy] library, which in practice means that most of the methods defined for Numpy Arrays apply to Pandas Series/DataFrames.
What makes Pandas so attractive is the powerful interface to access individual records of the table, proper handling of missing values, and relational-databases operations between DataFrames.
To access a value at the position [i,j]
of a DataFrame, we have two options, depending on
what is the meaning of i
in use.
Remember that a DataFrame provides a index as a way to identify the rows of the table;
a row, then, has a position inside the table as well as a label, which
uniquely identifies its entry in the DataFrame.
DataFrame.iloc[..., ...]
to select values by their (entry) positionimport pandas as pd
data = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')
print(data.iloc[0, 0])
1601.056136
DataFrame.loc[..., ...]
to select values by their (entry) label.data = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')
print(data.loc["Albania", "gdpPercap_1952"])
1601.056136
:
on its own to mean all columns or all rows.print(data.loc["Albania", :])
gdpPercap_1952 1601.056136
gdpPercap_1957 1942.284244
gdpPercap_1962 2312.888958
gdpPercap_1967 2760.196931
gdpPercap_1972 3313.422188
gdpPercap_1977 3533.003910
gdpPercap_1982 3630.880722
gdpPercap_1987 3738.932735
gdpPercap_1992 2497.437901
gdpPercap_1997 3193.054604
gdpPercap_2002 4604.211737
gdpPercap_2007 5937.029526
Name: Albania, dtype: float64
data.loc["Albania"]
(without a second index).print(data.loc[:, "gdpPercap_1952"])
country
Albania 1601.056136
Austria 6137.076492
Belgium 8343.105127
⋮ ⋮ ⋮
Switzerland 14734.232750
Turkey 1969.100980
United Kingdom 9979.508487
Name: gdpPercap_1952, dtype: float64
data["gdpPercap_1952"]
data.gdpPercap_1952
(since it’s a column name)DataFrame.loc
and a named slice.print(data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'])
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy 8243.582340 10022.401310 12269.273780
Montenegro 4649.593785 5907.850937 7778.414017
Netherlands 12790.849560 15363.251360 18794.745670
Norway 13450.401510 16361.876470 18965.055510
Poland 5338.752143 6557.152776 8006.506993
In the above code, we discover that slicing using loc
is inclusive at both
ends, which differs from slicing using iloc
, where slicing indicates
everything up to but not including the final index.
print(data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].max())
gdpPercap_1962 13450.40151
gdpPercap_1967 16361.87647
gdpPercap_1972 18965.05551
dtype: float64
print(data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].min())
gdpPercap_1962 4649.593785
gdpPercap_1967 5907.850937
gdpPercap_1972 7778.414017
dtype: float64
True
and False
.# Use a subset of data to keep output readable.
subset = data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972']
print('Subset of data:\n', subset)
# Which values were greater than 10000 ?
print('\nWhere are values large?\n', subset > 10000)
Subset of data:
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy 8243.582340 10022.401310 12269.273780
Montenegro 4649.593785 5907.850937 7778.414017
Netherlands 12790.849560 15363.251360 18794.745670
Norway 13450.401510 16361.876470 18965.055510
Poland 5338.752143 6557.152776 8006.506993
Where are values large?
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy False True True
Montenegro False False False
Netherlands True True True
Norway True True True
Poland False False False
mask = subset > 10000
print(subset[mask])
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy NaN 10022.40131 12269.27378
Montenegro NaN NaN NaN
Netherlands 12790.84956 15363.25136 18794.74567
Norway 13450.40151 16361.87647 18965.05551
Poland NaN NaN NaN
print(subset[subset > 10000].describe())
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
count 2.000000 3.000000 3.000000
mean 13120.625535 13915.843047 16676.358320
std 466.373656 3408.589070 3817.597015
min 12790.849560 10022.401310 12269.273780
25% 12955.737547 12692.826335 15532.009725
50% 13120.625535 15363.251360 18794.745670
75% 13285.513523 15862.563915 18879.900590
max 13450.401510 16361.876470 18965.055510
for
loop to process files given a list of their names.import pandas as pd
for filename in ['data/gapminder_gdp_africa.csv', 'data/gapminder_gdp_asia.csv']:
data = pd.read_csv(filename, index_col='country')
print(filename, data.min())
data/gapminder_gdp_africa.csv gdpPercap_1952 298.846212
gdpPercap_1957 335.997115
gdpPercap_1962 355.203227
gdpPercap_1967 412.977514
⋮ ⋮ ⋮
gdpPercap_1997 312.188423
gdpPercap_2002 241.165877
gdpPercap_2007 277.551859
dtype: float64
data/gapminder_gdp_asia.csv gdpPercap_1952 331
gdpPercap_1957 350
gdpPercap_1962 388
gdpPercap_1967 349
⋮ ⋮ ⋮
gdpPercap_1997 415
gdpPercap_2002 611
gdpPercap_2007 944
dtype: float64
glob.glob
to find sets of files whose names match a pattern.*
meaning “match zero or more characters”?
meaning “match exactly one character”glob
library to provide pattern matching functionalityglob
library contains a function also called glob
to match file patternsglob.glob('*.txt')
matches all files in the current directory
whose names end with .txt
.import glob
print('all csv files in data directory:', glob.glob('data/*.csv'))
all csv files in data directory: ['data/gapminder_all.csv', 'data/gapminder_gdp_africa.csv', \
'data/gapminder_gdp_americas.csv', 'data/gapminder_gdp_asia.csv', 'data/gapminder_gdp_europe.csv', \
'data/gapminder_gdp_oceania.csv']
print('all PDB files:', glob.glob('*.pdb'))
all PDB files: []
glob
and for
to process batches of files.for filename in glob.glob('data/gapminder_*.csv'):
data = pd.read_csv(filename)
print(filename, data['gdpPercap_1952'].min())
data/gapminder_all.csv 298.8462121
data/gapminder_gdp_africa.csv 298.8462121
data/gapminder_gdp_americas.csv 1397.717137
data/gapminder_gdp_asia.csv 331.0
data/gapminder_gdp_europe.csv 973.5331948
data/gapminder_gdp_oceania.csv 10039.59564
matplotlib
is the most widely used scientific plotting library in Python.matplotlib.pyplot
.%matplotlib inline
import matplotlib.pyplot as plt
time = [0, 1, 2, 3]
position = [0, 100, 200, 300]
plt.plot(time, position)
plt.xlabel('Time (hr)')
plt.ylabel('Position (km)')
Pandas dataframe
.matplotlib.pyplot
.string
to integer
data type, since they represent numerical valuesimport pandas as pd
data = pd.read_csv('data/gapminder_gdp_oceania.csv', index_col='country')
# Extract year from last 4 characters of each column name
years = data.columns.str.strip('gdpPercap_')
# Convert year values to integers, saving results back to dataframe
data.columns = years.astype(int)
data.loc['Australia'].plot()
DataFrame.plot
plots with the rows as the X axis.data.T.plot()
plt.ylabel('GDP per capita')
plt.style.use('ggplot')
data.T.plot(kind='bar')
plt.ylabel('GDP per capita')
matplotlib
plot
function directly.plt.plot(x, y)
years = data.columns
gdp_australia = data.loc['Australia']
plt.plot(years, gdp_australia, 'g--')
# Select two countries' worth of data.
gdp_australia = data.loc['Australia']
gdp_nz = data.loc['New Zealand']
# Plot with differently-colored markers.
plt.plot(years, gdp_australia, 'b-', label='Australia')
plt.plot(years, gdp_nz, 'g-', label='New Zealand')
# Create legend.
plt.legend(loc='upper left')
plt.xlabel('Year')
plt.ylabel('GDP per capita ($)')
Adding a Legend
Often when plotting multiple datasets on the same figure it is desirable to have a legend describing the data.
This can be done in
matplotlib
in two stages:
- Provide a label for each dataset in the figure:
plt.plot(years, gdp_australia, label='Australia') plt.plot(years, gdp_nz, label='New Zealand')
- Instruct
matplotlib
to create the legend.plt.legend()
By default matplotlib will attempt to place the legend in a suitable position. If you would rather specify a position this can be done with the
loc=
argument, e.g to place the legend in the upper left corner of the plot, specifyloc='upper left'
plt.scatter
or DataFrame.plot.scatter
plt.scatter(gdp_australia, gdp_nz)
data.T.plot.scatter(x = 'Australia', y = 'New Zealand')
If you are satisfied with the plot you see you may want to save it to a file, perhaps to include it in a publication. There is a function in the matplotlib.pyplot module that accomplishes this: savefig. Calling this function, e.g. with
plt.savefig('my_figure.png')
will save the current figure to the file
my_figure.png
. The file format will automatically be deduced from the file name extension (other formats are pdf, ps, eps and svg).Note that functions in
plt
refer to a global figure variable and after a figure has been displayed to the screen (e.g. withplt.show
) matplotlib will make this variable refer to a new empty figure. Therefore, make sure you callplt.savefig
before the plot is displayed to the screen, otherwise you may find a file with an empty plot.When using dataframes, data is often generated and plotted to screen in one line, and
plt.savefig
seems not to be a possible approach. One possibility to save the figure to file is then to
- save a reference to the current figure in a local variable (with
plt.gcf
)- call the
savefig
class method from that varible.fig = plt.gcf() # get current figure data.plot(kind='bar') fig.savefig('my_figure.png')
Workshop materials are drevied from work that is Copyright ©Software Carpentry.